PROTECTING CONVERSATIONS Basics of Encrypted Network Communications

Naïve Conversations

- * Captured messages could be read by anyone
- * Cannot be sure who sent the message you are reading

Basic Definitions

- * Authentication Act of confirming the integrity of a message and the identity of the person who sent it
- * Encryption Process of encoding messages so that eavesdroppers cannot read it, but authorized parties can

Early Attempts at Protection

- * Wax seals authenticated a message
- * Caesar ciphers encrypted the contents of the message
 - * "the quick fox"
 becomes "WKH
 TXLFN IRA"

More Advanced Protection

- * WWII German Enigma machine produced "uncrackable" ciphers
- * Signatures or watermarks, combined with shared secrets, give confidence in the identity of the sender

A Step Backwards

- * Early networked computers seemed to forget the lessons of the past
 - * Underpowered
 - * Mainly for research purposes

Cryptography to the Rescue

* Symmetric Ciphers
* Asymmetric Ciphers
* Cryptographic Hashes

Symmetric Ciphers

- * Single key is used for both encryption and decryption
- * Key is a shared secret between the two parties
- * Generally speedy
 - * Popular algorithms are moved into hardware for more speed
- * 3DES and AES are common (AES is preferable)

Asymmetric Ciphers

- * Two separate, mathematically-linked, keys for encryption and decryption
 - * One is secret, the other is public
- * Anyone can encrypt using the public key; only secret (private) key can decrypt
- * Typically slower than symmetric ciphers
- ***** RSA and ECC are common

Cryptographic Hashes

- * Algorithm that takes an arbitrarily-long block of data and returns a fixed-sized bit string
- * Designed such that changes in the data will very likely change the hash
- * Used with symmetric and asymmetric ciphers to produce HMAC (Hash-based Message Authentication Code)
 - * HMAC protect message integrity and authenticity
- * MD5, SHA-1, and SHA-256 are common

Pre-shared Keys

- * Prevents captured traffic from being deciphered
- * Anyone who could read message could have sent it

* Time consuming to set up

* Keys often reused

Public Key Encryption

* Packets are limited to the size of the key pair

- * Due to padding, 1024-bit RSA key yields a maximum message size of about 111 bytes (instead of the expected 128 bytes)
- * Arbitrary message lengths would likely require multiple RSA ciphers per message
- * Signing messages with the key pairs gives authenticity to the messages

GPG Model of Encryption Random symmetric keys protected by Public Key Crypto

Diffie-Hellman Key Exchange

- * Two parties without knowledge of each other can jointly establish a shared secret key over an insecure channel
- * No authentication is provided key exchange is anonymous
- * Discrete logarithm problem provides security
 - * Best known algorithms cannot retrieve secret data

Diffie-Hellman Key Exchange

Alice				Bob		
Secret	Public	Calc.	Send	Calc.	Public	Secret
a	p,g		p,g »			b
a	p, g, A	g^a mod p = A	A »		p, g	b
a	p, g, A		« B	g^b mod p = B	p, g, A, B	b
a, s	p, g, A, B	B^a mod p = s		A^b mod p = s	p, g, A, B	b, s

Diffie-Hellman Key Exchange

- ***** $B^a \mod p = A^b \mod p$
- $(g^b)^a \mod p = (g^a)^b \mod p$
- * Computationally hard to figure out large secret exponent from the public data

Station to Station Protocol

- * Adds authentication to Diffie-Hellman Key Exchange
 * Basic Protocol:
 - * Alice » Bob : g, p, A
 - * Alice « Bob : B, Cert_B, E_s($S_B(B, A)$)
 - * Alice \gg Bob : Cert_A, E_s(S_A(A, B))

* Encrypted signatures can be verified by the certificates

Enhancing Basic Protection

- * Protocol like Station to Station generates a symmetric cipher between known hosts
 - * Can be used to securely transmit data between hosts
- * Still vulnerable to several attacks
 - * Replay attacks
 - * Data modification
 - * Side-channel attacks

Replay Attacks

- * Attacker does not know the contents of the message, but can see it effects
- * Attacker intercepts messages and replays them in the future to replicate the observed effects
- * Example: if a message seen to cause a missile to fire, can replaying cause more missiles to fire?
- * Sequence numbered messages allow the receiver to track received messages

Data Modification

- * Corrupting messages can cause issues in poorly written software
- * Desirable to prevent message modification
- * HMAC of encrypted message contents
 - * Hash of the contents of the encrypted message
 - * Signed by the message sender

Side-Channel Attacks

- * Attack based on information gained from the implementation of the crypto-system, rather than brute force of weakness of the algorithms
- * Message length analysis could be one form of sidechannel attack
- * Encrypted messages can be padded to random lengths to hide the real length of the plaintext

Encrypted Protocols Insufficient

- * Only protects data in transit
- * Example: Email communication
 - * Encrypted session to SMTP server
 - * Encrypted session to IMAP/POP3 server
 - * No guarantees about security between SMTP servers
 - * No guarantees about storage of messages on intermediate servers (caching, store-and-forward)
- * Solution: Use GPG to protect data end-to-end

Summary

- * Authentication and Encryption secure the transmission of messages between two parties
 - * Prevents attackers from reading them and ensures the sender identity
- * Simply providing encryption is not enough to secure messages
- * Need to think about data at rest as well as data in transit

QUESTIONS?